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The intersection problem of latin squares was first studied around ten
years ago when T. Webb considered the intersections of two idempotent
commutative latin squares. Since then, a few results have been obtained
on this problem. In this paper, we will survey all the results we have
got so far and some of their applications will also be mentioned.

1. INTRODUCTION

A latin square of order v is a » X v array such that each of the integers
1,2,3,...,v (or any set of » distinct symbols) occurs exactly once in
each row and each column. Two latin squares of the same order, L = [/, ;]
and M = [m, ;], are said to have intersection %, denoted by |L N M| =k,
if there are exactly k cells (i, j) such that J; ; == m; ;. The intersection of
t(> 2) distinct latin squares of the same order can be defined similarly. The

iintersection problems mainly study for which integer k {0, 1, 2,..., v%}

there exist two (or ¢) latin squares (of certain type) which have intersec-
tion k. So far, the intersections of many types of latin squares have been
studied. Table 1.1 is a list of them. For clearness, we give their definitions

TABLE 1.1
Type Latin Square Shorthand
1 —_ LS
2 Idempotent ILS
3 Unipotent . ULS
4 Idempotent Commutative ~ ICLS
5 Commutative CLS
6 Unipotent Commutative UCLS
7 Commutative, with Holes CLSH
8 Half-Idempotent HILS
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in what follows. A latin square L = [/;,;] is idempotent if /; ; = i for each
i and it is wnipotent provided that /; ; = ¢ for each i and a fixed ¢. We
say L is commutative if /; ; = I; ; for all / and j. A latin square of even
order n which contains #/2 latin subsquares based on {x, y} in the cells
{x, y}x{x,y}, where {x,y}e H=1{1,2}, {3,4},...,{n—1,n}}, is
called a latin square with filled holes of size 2. It is a well-known result
that a commutative latin square of order » with filled holes of size 2
exists for each even n > 6, [3]. Finally, a latin square L = [/; ;] of order
2n is said to be half-idempotent if /; ;=i whenever 1 <i<n and
l,j =1i— nwhenevern 4+ 1 < i < 2n.

2. THE Basic TECHNIQUES

Since the intersections of # (> 2) distinct latin squares can be found by
a similar way as the intersections of two latin squares, hence in this
paper, we consider the intersections of two latin squares only. Let L and
M be two latin squares (of certain type) which have intersection k. By
taking away all the common entries, we obtain two partial latin squares
which satisfy the following conditions:

(1) The corresponding cells in these two partial latin squares are
either both filled or both empty.

(2) The entries in the corresponding filled cells are distinct.

(3) To each row and each column, these two partial latin squares
contain the same set of entries.

- The above conditions suggest us the following definitions. Two partial
Jatin squares are said to be comparable if (1) holds, two partial latin
squares are disjoint if (1) and (2) hold, and two partial latin squares are
called mutually balanced provided (1) and (3) hold.

Thus, when we are looking for possible intersections k& of two latin
squares of order v, we have to check first the existence of two disjoint
and mutually balanced (DMB) partial latin squares with »2 — & cells filled.
As an example, since there don’t exist two DMB partial latin squares
with either 1 or 2 or 3 or 5 cells filled, the intersections #2 — 5, v2 — 3,
92— 2, and 9?2 — 1 are simply not possible. That is, if we define Ji[v] to
be the set of all intersections between two latin squares of order » and of
type I, then we have the following result.

PRrROPOSITION 2.1.
Jiv] C© L[v]={0, 1,2,. .., ¥\ {v2—5,v2—3, v2—2,92~1},i=1,2,...,8.

On the above proposition, if i = 1, the set /;[¢] is quite good for the
possible intersections, as a matter of fact Ji[v] = I;[v] for each v = 5, [9].
But, for the other types of latin squares, I;[v] may be too large. Simply
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consider the intersections of two idempotent latin squares, we know
0,1,2,...,v — | are not possible intersections at all. Thus we have to
determine the set of possible intersections of latin squares of type i,
denoted by I;[v], then prove the following proposition first. (We omit
the proof.)

ProposITION 2.2. Jiv]C Liv},i=1,2,...,8.

Next, we have to determine exactly which intersection can actually
be obtained. In another words, we need to construct a pair of latin
squares of order v and type i which have the intersection we expect. In
mathematical term, we want to show that Jv] D L[v]forv =¢, ¢ is a
fixed small integer. Of course, we will not do this job by constructing a
pair of latin squares of order v and type i with intersection k for each
v, i, and k & I[v] independently. Before we go any further we need the
following definitions.

A (partial) latin square of order u, P = [p;,;], is said to be embedded
in a latin square of order », if there exists a latin square L = [I;,;] of
order v such that J;; = p;; for each filled cell in P. The embedding of a
(partial) latin square of certain type can be defined similarly. For the
results of embedding the readers can refer to[l,2]. As an example, a
(partial) latin square of order  can be embedded in a latin square of
order v = 2u.

With the above embedding results, we can easily develop some recur-
sive constructions. In what follows we will use idempotent latin squares
to describe the techniques. We first establish two recursive constructions
by using the embedding results.

PROPOSITION 2.3, If Jo[v] = L[v], v = 5, then Jo[2v + 1] = DL[2v + 1]
and J5[2v -+ 2] = DL[2v + 2], [9].

Proof. We outline the poof. Since an ILS(v), 4, can be embedded
in an ILS(2v + 1), by using Jo[v] = D[v] and the permutation of the
entries outside 4, we obtain Jo[2v + 1] = L[2v + 1]. The other case can
be obtained similarly.

After we got these recurrence relations, all we need are the ingredients,
Lv], v < 2t, if J[t] = L[¢] for some small 7. Since, by direct construc-
tions, we have Jo[6] = L[6]. Thus, we have to show J[7] = LiT],
Jo[8] = L[8], ..., and Jo[12] = L[12] by constructing a pair of idem-
potent latin squares for each possible intersection. It was a very difficult
job around ten years ago. But, it is easier now; with the help of computer
we can first generate a list of distinct latin squares of certain type (of
small order), then the intersection can be obtained right away. This idea
can be seen in [4, 5]. The idea can also be utilized to find all the possible
intersections for latin squares of very small order.
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We remark here that the recursive constructions of Proposition 2.3
will be changed if we consider different type of latin square.

As we have mentioned above, in order to see whether 4 is a possible
intersection of two latin squares of certain type, we first check the
existence of two DMB partial latin squares with »? — & cells filled. But
even if we can find DMB partial latin squares, we still cannot conclude that
h is a possible intersection. Figure 2.1 gives an example that there exist
two DMB partial latin squares of order 3 with 7 cells filled, but 2 is not a
possible intersection of latin squares of order 3. The reason is very

1] 2 2 |1

2 |1 ] 3 1|3 |2

3| 2 2 | 3
MFig..Z.l

simple. We have to make sure that these DMB partial latin squares of
order 3 can be completed to latin squares of order 3. No way we can do
that. From this fact we can casily see that some possible intersections are
not the intersections of small order latin squares. Thus the intersection
problem has come to determine the smallest (nontrivial) order ¢ of certain
type of latin squares in which Ji{¢t] = Li[t]. And it is believed that for each
admissible order » > ¢ we are going to have J;[v] = I [v]. This observation
works for almost all different types of latin squares so far have been
studied except the intersections of two commutative latin squares. Due to
the fact that a commutative latin square of odd order v must be diagonal,
ie, {1 <i<o}={l,2,...,0},v2— 7and v>— 4 are not possible
intersections, [6]. But, these two numbers are possible intersections for
commutative latin squares of even order. Thus, we have to consider odd
order and even order separately. One more fact is worthy of mention, in
the case of HILS, since we can construct an HILS of order 2v by using
the way in Fig. 2.2, hence we can obtain the intersections of HILS(2%) by
way of Ji[v] and J,[v]. Thus no recursive comstruction is necessary.
Similarly, the intersections of two CLSH(2v 4 2) can be obtained by the
other way [7], all we need is one recursive construction.

4 B
ILS(w) | LS |A»D basedon{l, 2,...,0)
HILS (20) :
C D
LS(») | ILS(v) |{B, Cbasedon{v+ 1, v+2,...,20}

Fig. 2.2
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For clearness, we use Table 2.3 to describe all results we know in
the intersection problem of latin squares, and omit the details.

Possible Recursive Admissible Smallest
Type Intersections Construction  Orders Order  Reference
v—>20
1. LS %] »>20+ 1 All 6 91
- v>2041
2. ILS *Llv) et All 6 191
v—>2p 3
3, ULS L{v] G A All 6 9]
v>20+1
4. ICLS  1h[v) i3 odd 7 [22]
{Odd: Lo\ v—>20+1 7
{o* — 17, 02— 4} v—>2043
5. CLS . {....... NI Al [6]
[Even: A0 “;:23 42 6
) .
6. UCLS Iiv] Z: S +2 Even 8 (i1, 15]
7. CLSH = ili{v] v->20+ 4 Even 10 (71
8. HILS ) None Even <10 [7
#hio] = hH{oIN{0,2,...,v— 1}
thlpl ={w+2k:kes{0,1,2,...,t,— 7, ty— 6, ty — 4, 1y}, ty = v(v — 1)[2}

:t[q[?)] = [2v 4 ke {0: 1,2,..., 8 — Ty 59 — 9,8, _4’ s'}’ Sy = (U-—- 2)/2]

3. APPLICATIONS

It is well-known that latin squares can be used to construct special
block design, for example, a latin square of order v and three disjoint
Steiner triple system of order » will produce a Steiner triple system of
order 3v by a tripling construction, Due to this fact, we can apply the
intersections of latin squares to study the intersections of two designs if
the designs are obtained from certain type of latin squares,

One of the earliest results is the intersection of two Steiner triple
systems which is solved by C. C. Lindner and A. Rosa in [16]. If we apply
the following constructions, 4 and B, of Steiner triple systems, then almost
all the intersections of two Steiner triple systems turn out to be ‘a direct
result ‘of the intersections of twoidempotent commutative latin squares
and two commutative latin squares with filled holes of size two.

CONSTRUCTION A. Let T be the set {1,2,...,20}v =3)and S =
(T'x{1, 2, 3})) U {«}. Also let Ly, L,, and L be three CLSH(2v). Define a
collection of triples, f, on S as follows:
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(1) if {x, y} belongs to the holes, define an STS(7) on the set {(x, i)},
(p, D)yo0:i=1,2, 3};and

(ii) if {x, y} is not a hole, let {(x, i), (»,7), (z,i + 1)} & ¢t where the
entry in (x, y) of L;is z,i =1, 2, 3 and 7/ + 1 takes modulo 3.

Then (S, )} is an STS(6v + 1).
ConstrRUCTION B. Let 7 be theset{1,2,...,2v 4 1}and § = Tx

{1, 2, 3}. Also, let Ly, L, and L; be three CILS(2v 4 1). Define a collection
of triples, #, on § as follows: '

i {x, 1), (x, 2), (x, 3)} = t foreach x = T; and

(i) {Cx, ), (3, 9), (z, i+ D} & tiftheentry in (x,y) of Lyisz, i=
1,2, 3, and 7 4+ 1 takes modulo 3.

Then (S, ¢) is an STS(6v + 3).

Similar to the above result, the intersections of two Mendelsohn triple
systems and Transitive triple systems can also be obtained by way of
tripling constructions and the intersections of two idempotent Iatin
squares. This will provide the same results as in [10, 12].

More recently, the intersections of pentagon systems are also obtained
by using the intersections of CLSH[3]. We believe some intersections of
“the other odd cycle systems [20, 21] can be found similarly.

The intersections of latin squares can also be used to find the inter-
sections of some other special type of triple systems, we just cannot
include them all here. One more fact we would like to mention is that a
I-factorization is equivalent to a unipotent commutative latin square, and
the intersections of two 1-factorizations act a very important role in obtain-
ing the intersections of two Steiner quadruple systems of order 2v, [19].

Recently, the intersections of more than two latin squares and two
designs have been studied and applied [4, 5, 7, 17, 18, 19]. We expect
more applications will be found in the near future, and this is why we try
to put the above known results together and hopefully bring this topic
into the attention of more people.
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